

GCE A LEVEL MARKING SCHEME

AUTUMN 2020

A LEVEL CHEMISTRY – COMPONENT 2 A410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL CHEMISTRY COMPONENT 2

ORGANIC CHEMISTRY AND ANALYSIS

AUTUMN 2020 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks

Examiners must mark in red ink.

One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.

Question totals should be written in the box at the end of the question.

Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules

All work should be seen to have been marked.

Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.

Crossed out responses not replaced should be marked.

Marking abbreviations

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao = correct answer only ecf = error carried forward bod = benefit of doubt

Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

	Question		Mork	ing dataila				Marks	available	•		
	Que	stion		Wark	ing details		AO	I AO2	AO3	Total	Maths	Prac
1			accept any su	itable four carbon	atom containing	aldehyde						
			e.g. CH₃CH=C accept alicycli	CHCHO / CH ₃ CH ₂ c compounds	CH₂CHO			1		1		1
2	(a)		$C_5H_{12}O_5$	5 anals (1)					1	1		
	(b)		three signals (two outer carb remaining two	ignals (1) ter carbons are equivalent, central carbon is independent, ing two carbon atoms are equivalent (1)					2	2		
3	(a)		С				1			1		
	(b)				Reagent added							
			Compound	NaHCO₃	Cr ₂ O ₇ ^{2–} / H ⁺	2,4-DNP						
			Α	no reaction	green solution	no reaction						
			В	effervescence	green solution	no reaction		3		3		3
			С	no reaction	green solution	orange/red ppt						
			award (1) for each correct column									

	0	otion	Marking dataila			Marks	available	•	
	Que	stion	Marking details	A01	AO2	AO3	Total	Maths	Prac
4	(a)		C ₂ H ₂ O	1			1		
	(b)	(i)	62		1		1		1
		(ii)	of the remaining nitrogen and helium the ratio by volume is 7:2 (1) volume of nitrogen = $\frac{7 \times 62}{9} = 48$ volume of helium = $\frac{2 \times 62}{9} = 14$ (1)		2		2		
5	(a)		$ \begin{array}{c} & H \\ & & H \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & $	2			2		
	<i>(b)</i>		award (1) for any of following ethanoic acid / CH ₃ COOH ethanoic anhydride / (CH ₃ CO) ₂ O ethanoyl chloride / CH ₃ COCI	1			1		1
			Section A total	5	7	3	15	0	6

Section B

	0.00	tion	Marking datails			Marks	available	9	
	Ques	stion		AO1	AO2	AO3	Total	Maths	Prac
6	(a)	(i)	HO HO	1			1		
		(ii)	the (zwitterion) structure of tyrosine leads to ionic bonding (1) strong forces between ions, therefore more energy needed to separate the ions, leading to a high melting temperature (1)	2			2		
		(iii)	award (1) for either of following $\downarrow \qquad \qquad$	1			1		
		(iv)	purple coloration	1			1		1

		Merking details			Marks	available	e	
luestion		Marking details	AO1	AO2	AO3	Total	Maths	Prac
(v)	M_r of tyrosine is 181 since CO ₂ is lost M_r atom economy = $\frac{137}{100}$	of tyramine is 44 less \rightarrow 137 (1) $\frac{7 \times 100}{181}$ = 75.7 (1)		2		2	2	
	must be given to 3 s	ig figs						
<i>b)</i> (i)	triplet at ~1.1, charac carbon atom with 2 p quartet at ~2.8, char —CH₃ group (1) ratio suggests an eth	cteristic of a —CH ₃ group, must be next to protons (1) acteristic of a —CH ₂ — group adjacent to a nyl group, therefore the R group is CH ₃ CH ₂	a (1)	3		3		
(ii)	Compound T	CH ₃ CH ₂ C						
	U	CH ₃ CH ₂ C H OH			3	3		3
	V	CH ₃ CH ₂ CH(OH)COOH						

	0	otion	Marking dataila			Marks	available	9	
	Que	stion		A01	AO2	AO3	Total	Maths	Prac
7	(a)		mass of butane = 10.48 - 3.52 = 6.96						
			moles of propane = $\frac{3.52}{44}$ = 0.0800						
			moles of butane = $\frac{6.96}{58}$ = 0.120 (1)						
			1 mol of propane gives 3 mol of CO ₂						
			therefore 0.0800 mol propane gives 0.240 mol CO_2 (1)		5		Б	2	
			volume of this $CO_2 = 0.240 \times 24.5 = 5.88$ (1)		5		5	2	
			1 mol of butane gives 4 mol of CO ₂						
			therefore 0.120 mol butane gives 0.480 mol CO_2						
			volume of this $CO_2 = 11.76$ (1)						
			total volume of $CO_2 = 17.64$ (1)						
	(b)		62 mg ethanethiol contain 32 mg sulfur						
			17 mg ethanethiol contains $\frac{32 \times 17}{62}$ = 8.8 mg of sulfur (1)						
			therefore percentage of sulfur in the LPG = $\frac{8.8 \times 100}{600 \times 1000}$ (1)		3		3	1	
			$1.5 \times 10^{-3} / 0.0015$ (1)						

Marks av	ailahlo	

Question	Marki	va detelle			Marks	available	ilable ptal Maths P 2 4			
Ques	stion		Warki	ng details	AO1	AO2	AO3	Total	Maths	Prac
(C)			methylpropane is a branched molecule and has weaker packing / less surface area in contact (1) as a result van der Waals forces / forces between molecules are weaker therefore less energy is needed to separate the molecules and boiling temperature is lower (1)			1		2		
(d)			award (1) for each advantage							
			Property	Advantage						
			Reacts with both carbon dioxide and hydrogen sulfide	other amines may not remove both gases / removes poisonous gases						
			It has a high boiling temperature	loss of the amine is minimised			Δ	Δ		2
			It is immiscible with hydrocarbons	easier separation						2
			Its reaction with both carbon dioxide and hydrogen sulfide is exothermic	lower operating costs / less equipment degradation / heat produced used elsewhere						
			credit other sensible responses -	discuss at conference						
(e)	(i)		nitrogen atoms are proton accep	tors / electron pair donors	1			1		

Marking dataila	Marks available							
Marking details	AO1	AO2	AO3	Total	Maths	Prac		

0	stion	Marking dataila			Marks	availabit		
Que	SUON	Marking uetails	A01	AO2	AO3	Total	Maths	Prac
	(ii)	$-CI \xrightarrow{H} N^+ \xrightarrow{+} N_H$ CI^- accept the cation without anions		1		1		
(f)		$H_{3}C \xrightarrow[CH_{3}]{H_{3}C} \xrightarrow[CH_{3}]{H_{3}C} (1)$ all the hydrogen atoms are equivalent (therefore only one monochlorinated product) (1)			2	2		
		Question 7 total	2	10	6	18	3	2

	0	-tion	Merking deteile			Marks	available	9	
	Ques	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
8	Ques (a)	stion	Marking details Indicative content 2-methylundecanal (is an aldehyde) and will give a silver mirror with Tollens' reagent / red solid with Fehling's reagent / be oxidised by acidified dichromate, reducing this from orange to green whereas compounds D and G will not react in this way compound D will give a yellow precipitate with alkaline iodine, whereas 2-methylundecanal will not react in this way 2-methylundecanal contains a chiral centre and will rotate the plane of plane polarised light, compound E does not contain a chiral centre and will not rotate the plane of plane polarised light	AO1	A02	AO3	Total	Maths	Prac
			 compound F only contains 11 carbon atoms / has the molecular formula C₁₁H₂₂O and cannot therefore be 2-methylundecanal compound F only contains 11 carbon atoms and will have a lower boiling temperature than 2-methylundecanal compound G contains a chiral centre, as does 2-methylundecanal but will not react with Tollens' reagent to give a silver mirror / give a red solid with Fehling's reagent / be oxidised by acidified dichromate, reducing this from orange to green all the compounds will give an orange-red precipitate with 2,4-DNP, although it is likely that each precipitate will have a different melting temperature 		3	3	6		4

Question	Marking dataila			Marks	available)	
Question	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	 5-6 marks Appropriate tests suggested; correct observations given for 2-methylundecanal and three/four of compounds D to G in turn The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Some appropriate tests suggested; correct observations for 2-methylundecanal and/or some of compounds D to G The candidate constructs a coherent account including many of the key elements of the indicative conventions and use of scientific conventions and						
	 1-2 marks One appropriate test suggested; correct observation for 2-methylundecanal and/or one of compounds D to G The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary. O marks The candidate does not make any attempt or give an answer worthy of credit.						

	PMT

0.00	otion	Marking dataila	Marks available					
Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
(b)	(i)	$n(H_2) = \frac{4.78}{24.5} = 0.195 $ (1)						
		each mol of lycopene needs 13 mol of hydrogen						
		$n(\text{lycopene}) = \frac{0.195}{13} = 0.0150$ (1)		л		4	2	
		$M_{\rm r}({\rm lycopene}) = 536.6$ (1)		4		4	2	
		$m(lycopene) = 0.0150 \times 536.6 = 8.05$ (1)						
		ecf possible throughout						
	(ii)	all colours other than red are absorbed	1			1		
		accept blue / blue-green / green						
	(iii)	from graph absorption 1.24 corresponds to 0.050 g dm ^{-3} (1)	1					
		mass in 10 cm ³ of hexane is $0.00050 / 5.0 \times 10^{-4}$ g (1)				3	1	
		percentage = $\frac{5.0 \times 10^{-4} \times 100}{20} = 0.0025$ (1)		2		0		
	(iv)	lycopene is a hydrocarbon and does not contain any polar groups that can hydrogen bond with water		1		1		
		accept correct references to intermolecular bonding						

Questien	Marking dataila			Marks	available)	
Question	Marking details	A01	AO2	AO3	Total	Maths	Prac
(C)	as the number of conjugated carbon to carbon double bonds increases, the wavelength of their absorption maxima increases, the frequency decreases and the energy decreases award (2) for all four correct award (1) for any three correct			2	2		
(d)	the peak given by lycopene is (very much) larger than the others (as it is the main coloured component) (1) run a chromatogram with pure lycopene and compare the retention times (1)		1	1	2		
	Question 8 total	2	11	6	19	3	4

Marks available										
	AO1	AO2	AO3	Total	Maths	Prac				
		1		1						

9	(a)	(i)	OH	+ $3Br_2 \longrightarrow Br + 3HBr Br$		1	1	
		(ii)	bromine de white preci	ecolourised (1) pitate (1)	2		2	2
	(b)		Curly arrow Wheland ir H⁺ (1)	CI H		3	3	
	(C)	(i)	O—H bond / the anion with the rin ethanol ca	I is weakened by oxygen lone pair interaction with the ring is more stable (due to stabilisation of the oxygen lone pair g) (1) nnot react in this way and is therefore not acidic (1)		2	2	

Marking details

Question

0.00	stion	Marking dataila			Marks	available	9	
Que	SUON		AO1	AO2	AO3	Total	Maths	Prac
	(ii)	 award (1) for any of following reaction would involve nucleophilic attack on the phenol by an OH⁻ the ring is electron rich and not susceptible to attack by nucleophiles aromatic C—CI bond is stronger than aliphatic C—CI bond 		1		1		
(d)		some 2,6-dichlorophenol remains unreacted and this is compensated for by polychlorination (1) other dichlorinated isomers are formed (1)			2	2		
(e)	(i)	the major product is 2,4-dichlorohexane because the reaction proceeds via the secondary carbocation (1) this is more stable / more easily formed than the primary carbocation (needed to form 1,6-dichlorohexane) (1)			2	2		
	(ii)	(aqueous) sodium hydroxide	1			1		1

Quest	lon		Marking dataila			Marks	available	e	
Quest	lion			AO1	AO2	AO3	Total	Maths	Prac
	(iii)		$H_{H} = H_{H} = H_{H$	2			2		
	(iv)	Ι	small molecule / water is eliminated	1			1		
		II	$ \begin{array}{c} \begin{array}{c} H \\ - O \\ - C(CH_2)_4C \\ - U \\ H \\ H \\ \end{array} \left[\begin{array}{c} O \\ - C(CH_2)_4C \\ - U \\ - U$	1			1		
	(v)		ammonia / NH ₃	1			1		1

Question		Marking dataila			Marks	available	e	
Ques	stion	marking details	AO1	AO2	AO3	Total	Maths	Prac
(f)		award (1) for identification of signals at 1.2 and 2.4 at 1.2 $R-CH_3$ at 2.4 $H-C-C$ from peak areas R group must contain 6 equivalent protons and 1 'single' (1) H_3C-C H_3C H_2 (1)			3	3		
		 Question 9 total	8	7	7	22	0	4

ممار	tion	Marking dotails	Marks available								
anes	lion		A01	AO2	AO3	Total	Maths	Prac			
(a)	(i)	$n(\text{NaOH}) = \frac{0.120 \times 5.60}{1000} = 6.72 \times 10^{-4}$ (1)									
		$n(\text{malic acid}) = \frac{6.72 \times 10^{-4}}{2} = 3.36 \times 10^{-4}$									
		mass malic acid = $3.36 \times 10^{-4} \times 134 = 0.0450$ (1)		3		3	2				
		percentage malic acid = $\frac{0.0450 \times 100}{6.80} = 0.66$ (1)									
	(ii)	amount of water is immaterial as it does not take part in the reaction / only the apple juice contains malic acid / same number of moles of malic acid present		1		1		1			
	(iii)	award (1) each for any two of following									
		 use a larger sample of apple juice – this will give a larger titre use NaOH(aq) of lower concentration – this will give a larger titre repeat several times 			2	2		2			
))	(i)	COOH									
		H C	1			1					

10

0.00	ation	Marking dataila			Marks	available	9	
Que	stion	Marking details	AO1	AO2	AO3	Total	Maths	Prac
	(ii)	$C = \frac{100 \times \alpha}{[\alpha^{20}D] \times L} = \frac{100 \times 4.5}{27 \times 1} = 16.6 $ (1)						
		$c = 166 \text{ g dm}^{-3}$ (1)		3		3	2	
		$c = 1.24 \text{ mol } dm^{-3}$ (1)						
(c)	(i)	isomerism caused by atoms taking up different positions in space	1			1		
	(ii)	malic acid shows optical isomerism as it has a chiral centre / asymmetric carbon atom (1) maleic acid and fumaric acid do not have a chiral centre and differ only by the positions of the groups around the C=C double bond / references to <i>E-Z</i> isomerism (1)		2		2		
(d)	(i)	Sn and conc. HCI	1			1		1
	(ii)	ethanoyl chloride / ethanoic anhydride / CH_3COCI / $(CH_3CO)_2O$	1			1		1
	(iii)	$\begin{tabular}{ c c } & NH_2 \\ \hline & & \\ \hline & & \\ & & \\ & & \\ & & NO_2 \end{tabular} tabu$		1		1		

- г)//	Т
-	'IVI	
•		

Question		Marking datails		Marks available							
Ques	stion			AO1	AO2	AO3	Total	Maths	Prac		
(e)	(i)	stage 1 room temperature / ~20°C / temperatures > 10°C	: (1)								
		stage 2 5-10°C (1)		2			2		2		
	(ii)	NaCl + H ₂ O			1		1				
		Question 1) total	6	11	2	19	4	7		

	0	stion		Marking dataila			Marks	available	e	
	Ques	stion			A01	AO2	AO3	Total	Maths	Prac
11	(a)	(i)		67.5% yield of the ester $\Rightarrow 0.0236 \text{ mol}$ (1) $M_{\rm r} = 198$ mass = 198 × 0.0236 = 4.68 (1)		2		2		
		(ii)		$\begin{array}{l} 0.0236 \mbox{ mol } CO_2 \mbox{ formed along with } 0.0236 \mbox{ mol phenyl benzoate (1)} \\ 0.0350 - 0.0236 = 0.0114 \mbox{ mol decomposed to form diphenyl} \\ 2 \times 0.0114 \mbox{ mol } CO_2 \mbox{ also formed} (1) \\ total \mbox{ mol } CO_2 = 0.0236 + 0.0228 = 0.0464 \mbox{ mol} (1) \\ volume \mbox{ CO}_2 = 0.0464 \times 24.5 = 1.137 \mbox{ (1)} \end{array}$		2	2	4	2	
		(iii)	Ι	hydrolysis	1			1		
			II	filter, wash (and dry) accept 'filtration'	1			1		1

ΡM	17

Question			Marking details	Marks available						
				A01	AO2	AO3	Total	Maths	Prac	
(b)			Indicative points							
			pV = nRT							
			$n = \frac{7.80 \times 10^4 \times 936 \times 10^{-6}}{8.31 \times 353} = 0.0249$							
			$M_{\rm r} = \frac{1.80}{0.0249} = 72$							
			66.6 % carbon mass ⇔ 0.666 × 72 = 48 therefore four carbon atoms per molecule							
			must contain only one oxygen atom per molecule (as with two M_r would exceed 72)							
			must be eight H atoms to make M_r 72 \Rightarrow molecular formula C ₄ H ₈ O		3	3	6	2		
			from infrared information \Rightarrow no C=C, C=O or O—H bonds							
			so must be C—O bond							
			signals at 25.8 and 68.0 ppm identified							
			possibilities are							
			H = H = H = H = H = H = H = H = H = H =							

Overtien	Marking details	Marks available						
Question		AO1	AO2	AO3	Total	Maths	Prac	
	 5-6 marks Appropriate conclusions drawn from each piece of information; correct structure given The candidate constructs a relevant, coherent and logically structured account including all key elements of the indicative content. A sustained and substantiated line of reasoning is evident and scientific conventions and vocabulary are used accurately throughout. 3-4 marks Conclusions drawn from most pieces of information; sensible attempt at a structure based on those conclusions The candidate constructs a coherent account including many of the key elements of the indicative content. Some reasoning is evident in the linking of key points and use of scientific conventions and vocabulary is generally sound.							
	 1-2 marks Simple conclusions drawn from some of the information The candidate attempts to link at least two relevant points from the indicative material. Coherence is limited by omission and/or inclusion of irrelevant materials. There is some evidence of appropriate use of scientific conventions and vocabulary. 0 marks The candidate does not make any attempt or give an answer worthy of credit. 							
	Question 11 total	2	7	5	14	4	1	

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS

PMT

SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	5	7	3	15	0	6
6	5	5	3	13	2	4
7	2	10	6	18	3	2
8	2	11	6	19	3	4
9	8	7	7	22	0	4
10	6	11	2	19	4	7
11	2	7	5	14	4	1
Totals	30	58	32	120	16	28

A410U20-1 Eduqas GCE A Level Chemistry Component 2 MS A20/CB