GCE A LEVEL MARKING SCHEME

AUTUMN 2020

A LEVEL
CHEMISTRY - COMPONENT 2
A410U20-1

INTRODUCTION

This marking scheme was used by WJEC for the 2020 examination. It was finalised after detailed discussion at examiners' conferences by all the examiners involved in the assessment. The conference was held shortly after the paper was taken so that reference could be made to the full range of candidates' responses, with photocopied scripts forming the basis of discussion. The aim of the conference was to ensure that the marking scheme was interpreted and applied in the same way by all examiners.

It is hoped that this information will be of assistance to centres but it is recognised at the same time that, without the benefit of participation in the examiners' conference, teachers may have different views on certain matters of detail or interpretation.

WJEC regrets that it cannot enter into any discussion or correspondence about this marking scheme.

GCE A LEVEL CHEMISTRY COMPONENT 2

ORGANIC CHEMISTRY AND ANALYSIS

AUTUMN 2020 MARK SCHEME

GENERAL INSTRUCTIONS

Recording of marks
Examiners must mark in red ink.
One tick must equate to one mark, apart from extended response questions where a level of response mark scheme is applied.
Question totals should be written in the box at the end of the question.
Question totals should be entered onto the grid on the front cover and these should be added to give the script total for each candidate.

Extended response questions

A level of response mark scheme is applied. The complete response should be read in order to establish the most appropriate band. Award the higher mark if there is a good match with content and communication criteria. Award the lower mark if either content or communication barely meets the criteria.

Marking rules
All work should be seen to have been marked.
Marking schemes will indicate when explicit working is deemed to be a necessary part of a correct answer.
Crossed out responses not replaced should be marked.

The following may be used in marking schemes or in the marking of scripts to indicate reasons for the marks awarded.

cao $=$	correct answer only
ecf $=$	error carried forward

ecf = error carried forward
bod $=$ benefit of doubt
Credit should be awarded for correct and relevant alternative responses which are not recorded in the mark scheme.

Section A

Question			Marking details				Marks available									
			A01	AO2	AO3	Total	Maths	Prac								
1							accept any suitable four carbon atom containing aldehyde e.g. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCHO} / \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ accept alicyclic compounds					1		1		1
2	(a)		$\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{5}$						1	1						
	(b)		three signals (1) two outer carbons are equivalent, central carbon is independent, remaining two carbon atoms are equivalent (1)						2	2						
3	(a)		C				1			1						
	(b)		Compound	Reagent added				3		3		3				
				NaHCO_{3}	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{2-} / \mathrm{H}^{+}$	2,4-DNP										
			A	no reaction	green solution	no reaction										
			B	effervescence	green solution	no reaction										
			C	no reaction	green solution	orange/red ppt										
			award (1) for each correct column													

Question			Marking details	Marks available						
			A01	AO2	AO3	Total	Maths	Prac		
4	(a)			$\mathrm{C}_{2} \mathrm{H}_{2} \mathrm{O}$	1			1		
	(b)	(i)	62		1		1		1	
		(ii)	of the remaining nitrogen and helium the ratio by volume is 7:2 (1) volume of nitrogen $=\frac{7 \times 62}{9}=48$ volume of helium $=\frac{2 \times 62}{9}=14$ (1)		2		2			
5	(a)			2			2			
	(b)		award (1) for any of following ethanoic acid $/ \mathrm{CH}_{3} \mathrm{COOH}$ ethanoic anhydride / ($\left.\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$ ethanoyl chloride / $\mathrm{CH}_{3} \mathrm{COCl}$	1			1		1	
			Section A total	5	7	3	15	0	6	

Section B

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
6	(a)	(i)			1			1		
		(ii)	the (zwitterion) structure of tyrosine leads to ionic bonding (1) strong forces between ions, therefore more energy needed to separate the ions, leading to a high melting temperature (1)	2			2			
		(iii)	award (1) for either of following	1			1			
		(iv)	purple coloration	1			1		1	

Question			Marking details		Marks available							
			AO1	AO2	AO3	Total	Maths	Prac				
7	(a)				$\begin{align*} & \text { mass of butane }=10.48-3.52=6.96 \\ & \text { moles of propane }=\frac{3.52}{44}=0.0800 \\ & \text { moles of butane }=\frac{6.96}{58}=0.120 \tag{1} \end{align*}$ 1 mol of propane gives 3 mol of CO_{2} therefore 0.0800 mol propane gives $0.240 \mathrm{~mol} \mathrm{CO}_{2}$ volume of this $\mathrm{CO}_{2}=0.240 \times 24.5=5.88$ 1 mol of butane gives 4 mol of CO_{2} therefore 0.120 mol butane gives $0.480 \mathrm{~mol} \mathrm{CO}_{2}$ volume of this $\mathrm{CO}_{2}=11.76$ total volume of $\mathrm{CO}_{2}=17.64$	(1)		5		5	2	
	(b)		62 mg ethanethiol contain 32 mg sulfur 17 mg ethanethiol contains $\frac{32 \times 17}{62}=8.8 \mathrm{mg}$ of sulfur therefore percentage of sulfur in the LPG $=\frac{8.8 \times 100}{600 \times 1000}$ $\begin{equation*} 1.5 \times 10^{-3} / 0.0015 \tag{1} \end{equation*}$	(1) (1)		3		3	1			

Question		Marking details	Marks available						
		AO1	AO2	AO3	Total	Maths	Prac		
(c)			as the number of conjugated carbon to carbon double bonds increases, the wavelength of their absorption maxima increases, the frequency decreases and the energy decreases award (2) for all four correct award (1) for any three correct			2	2		
(d)		the peak given by lycopene is (very much) larger than the others (as it is the main coloured component) (1) run a chromatogram with pure lycopene and compare the retention times (1)		1	1	2			
		Question 8 total	2	11	6	19	3	4	

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
9	(a)	(i)				1		1		
		(ii)	bromine decolourised (1) white precipitate (1)	2			2		2	
	(b)				3		3			
	(c)	(i)	$\mathrm{O}-\mathrm{H}$ bond is weakened by oxygen lone pair interaction with the ring / the anion is more stable (due to stabilisation of the oxygen lone pair with the ring) (1) ethanol cannot react in this way and is therefore not acidic (1)		2		2			

Question			Marking details	Marks available						
			AO1	AO2	AO3	Total	Maths	Prac		
10	(a)	(i)		$\begin{align*} & n(\mathrm{NaOH})=\frac{0.120 \times 5.60}{1000}=6.72 \times 10^{-4} \tag{1}\\ & n(\text { malic acid })=\frac{6.72 \times 10^{-4}}{2}=3.36 \times 10^{-4} \\ & \text { mass malic acid }=3.36 \times 10^{-4} \times 134=0.0450 \tag{1}\\ & \text { percentage malic acid }=\frac{0.0450 \times 100}{6.80}=0.66 \tag{1} \end{align*}$		3		3	2	
		(ii)	amount of water is immaterial as it does not take part in the reaction / only the apple juice contains malic acid / same number of moles of malic acid present		1		1		1	
		(iii)	award (1) each for any two of following - use a larger sample of apple juice - this will give a larger titre - use $\mathrm{NaOH}(\mathrm{aq})$ of lower concentration - this will give a larger titre - repeat several times			2	2		2	
	(b)	(i)		1			1			

Question		Marking details	Marks available						
		AO1	AO2	AO3	Total	Maths	Prac		
	(ii)		$\begin{align*} & \mathrm{c}=\frac{100 \times \alpha}{\left[\alpha^{20} D\right] \times L}=\frac{100 \times 4.5}{27 \times 1}=16.6 \tag{1}\\ & \mathrm{c}=166 \mathrm{~g} \mathrm{dm}^{-3} \tag{1}\\ & \mathrm{c}=1.24 \mathrm{~mol} \mathrm{dm}^{-3} \tag{1} \end{align*}$		3		3	2	
(c)	(i)	isomerism caused by atoms taking up different positions in space	1			1			
	(ii)	malic acid shows optical isomerism as it has a chiral centre / asymmetric carbon atom (1) maleic acid and fumaric acid do not have a chiral centre and differ only by the positions of the groups around the $\mathrm{C}=\mathrm{C}$ double bond / references to $E-Z$ isomerism (1)		2		2			
(d)	(i)	Sn and conc. HCl	1			1		1	
	(ii)	ethanoyl chloride / ethanoic anhydride / $\mathrm{CH}_{3} \mathrm{COCl} /\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{O}$	1			1		1	
	(iii)	 and $\mathrm{CH}_{3} \mathrm{COO}^{-} \mathrm{Na}^{+}$(charges unnecessary)		1		1			

Question		Marking details		Marks available							
		A01	AO2	AO3	Total	Maths	Prac				
(e)	(i)			stage 1 stage 2	room temperature $/ \sim 20^{\circ} \mathrm{C}$ / temperatures $>10^{\circ} \mathrm{C}$ (1) $5-10^{\circ} \mathrm{C}(1)$	2			2		2
	(ii)	$\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O}$			1		1				
			Question 10 total	6	11	2	19	4	7		

Question				Marking details	Marks available						
				AO1	AO2	AO3	Total	Maths	Prac		
11	(a)	(i)			67.5% yield of the ester $\Rightarrow 0.0236 \mathrm{~mol}$ $\begin{align*} & M_{\mathrm{r}}=198 \\ & \text { mass }=198 \times 0.0236=4.68 \tag{1} \end{align*}$		2		2		
		(ii)		$0.0236 \mathrm{~mol} \mathrm{CO}_{2}$ formed along with 0.0236 mol phenyl benzoate (1) $0.0350-0.0236=0.0114$ mol decomposed to form diphenyl $2 \times 0.0114 \mathrm{~mol} \mathrm{CO}_{2}$ also formed total $\mathrm{mol} \mathrm{CO}_{2}=0.0236+0.0228=0.0464 \mathrm{~mol}$ volume $\mathrm{CO}_{2}=0.0464 \times 24.5=1.137$		2	2	4	2		
		(iii)	1	hydrolysis	1			1			
			II	filter, wash (and dry) accept 'filtration'	1			1		1	

COMPONENT 2: ORGANIC CHEMISTRY AND ANALYSIS
SUMMARY OF MARKS ALLOCATED TO ASSESSMENT OBJECTIVES

Question	AO1	AO2	AO3	Total	Maths	Prac
Section A	5	7	3	15	0	6
6	5	5	3	13	2	4
7	2	10	6	18	3	2
8	2	11	6	19	3	4
9	8	7	7	22	0	4
10	6	11	2	19	4	7
11	2	7	5	14	4	1
Totals	30	58	32	120	16	28

